Our donor candidates undergo a strict protocol for their selection through different stages, which is under continuous revision and improvement. We introduce new screening tests and improve existing ones in order to offer the highest success rates for fullfulling a woman´s dream, not only of achieving motherhood but also having a healthy baby.
We do not only perform the tests required by Spanish law but complete the study according to recommendations of International Scientific Societies.
- 95 % are university students.
- 99% are Spanish nationals
- Aged between 18 – 50 years old
- Average age: 21 years old
Sperm Donors Selection
An Individual and family medical history is carried out tracing back to grandparents, to rule out hereditary diseases, according to Spanish Law 9/2014 and RD 412/1996.
We add an evaluation the psychological history of the donor and his family environment as recommended by Spanish Society for Fertility (SEF).
Since the law does not address the exclusion criteria, we proceeded back in 2007 , with the help of various experts in each subject and in the context of Ceifer Classroom Training, to the publication of the book “THOUGHTS ON THE EVALUATION OF GAMETE AND EMBRYO DONORS´´. This study provides support for the selection of donors.
In CEIFER BioBanco only those candidates with minimal Seminal values are admitted as donors.
Minimum seminal values
- Sperm concentration: 80 million-spz/mL
- Sperm motility: 50 %
- Sperm morphology: 4 %
We perform all the necessary investigations to rule out Sexually Transmitted Diseases.
Serologic tests are made regularly to every donor, during the initial phase and after 6 months quarantine period. Tests against the following agents are performed:
STDs | Markers |
HIV | Ag p24, HIV 1/2 ab |
Hepatitis B | HBsAg, HBsAb, HBcAb (IgM, IgG) |
Hepatitis C | Ab anti HCV |
Syphilis | TPHA-VDRL |
CMV | Ab Anti-CMV (IgM. IgG)* |
* If anti-Cytomegalovirus IgM is positive, PCR analysis is performed.
Chlamyidia
Chlamydia Trachomatis analysis is performed through PCR test in urine.
- To discard pathogenic microorganisms that can cause pathology in the recipient woman.
- To protect cultures made in IVF techniques from contamination that could jeopardize the viability of the technique.
Therefore donors and / or samples are discarded if the following criteria is not met:
- Total absence of pathogenic germs growth.
- Polymicrobial wound flora < 1000 UFC/mL.
- Blood type
- Rh Factor
- Blood count
- Hemostasis:
- Prothrombin time
- TTPA
- Biochemistry:
- Glucose
- Creatinine
- Total cholesterol
- HDL cholesterol
- Triglycerides
- Transaminases (GOT, GPT)
We have implemented a protocol for the study of genetic diseases at our sperm bank which is unique worldwide.
CEIFER Protocol for genetic studies allows discarding potential donors who are carriers of the most prevalent genetic diseases, specifically those of autosomal recessive nature that manifest only in the offspring.
Chromosome Study – Kariotype
Only donor candidates with normal kariotype are accepted. Additionally candidates with polymorphic karyotypes are discarded since they offer lower results for assisted reproduction techniques.
Carriers of autosomal recessive monogenic diseases
Genetic studies are carried out to eliminate donor candidates who are carriers of the most prevalent autosomal recessive monogenic diseases in our environment (Mediterranean area of Europe).
Disease | Gene | Sequencing |
Study of gene carriers of Cystic Fibrosis | CFTR | View Table 1* |
Spinal Muscular Atrophy | SMN1 | Complete Gene |
Autosomal recessive deafness Type A | GJB2 | Complete Gene |
Alpha thalassemia | HBA1/HBA2 | Complete Gene |
Beta thalassemia | HBB | Complete Gene |
Familial Mediterranean fever | MEFV | Complete Gene |
Phenylalanine Hydroxylase Deficiency | PAH | Complete Gene |
Pompe disease | GAA | Complete Gene |
Alport Syndrome | COL4A4 | Complete Gene |
Smith-Lemli-Opitz syndrome | DHCR7 | Complete Gene |
Tay-Sachs Disease | HEXA | Complete Gene |
Glucose-6-phosphate dehydrogenase deficiency | G6PD | Complete Gene |
To reduce the risk of offspring affected by these and other diseases, it is recommended to perform Genetic Matching (more information below in DNA Bank and Genetic Matching)
DNA BANK
From 2005 on CEIFER Biobanco has a sperm donor DNA bank. In this way, in case of the appearance of genetic disease in the offspring, we can carry out the pertinent genetic studies. CEIFER Biobanco thus has a global vision and the most advanced technology for:
- Screening for genetic disorders in live birth cases where offspring is affected.
- Implement screening tests for new genetic disorders in our screening protocols.
GENETIC MATCHING
Genetic matching allows the genetic information of the donor to be compared with that of the recipient woman in order to avoid the transmission of autosomal recessive genetic diseases.
To this end, a mass sequencing test against more than 307 genes related to monogenic recessive diseases is carried out. This analysis is performed using the most modern techniques of mass sequencing (Next Generation Sequencing – NGS).
Among these 307 genes screened there are variants with a particularly high incidence in the Mediterranean area. The results from our donor samples are compared with the similar genetic study performed on the recipient woman, selecting a suitable donor so that sperm donor and the receiving woman do not share mutations in the same genes.
(The genetic matching protocol does not eliminate the risk in the offspring of being affected or being a carrier of recessive diseases, even if it is one of the diseases studied. Its objective is the significant reduction of risks, depending on the disease object of study).
SCREENED GENES
Enfermedad | Gen |
---|---|
17-beta-hydroxysteroid dehydrogenase X deficiency | HSD17B10 |
2-methylbutyrylglycinuria | ACADSB |
3-Methylcrotonyl-CoA carboxylase 1 deficiency | MCCC1 |
3-Methylcrotonyl-CoA carboxylase 2 deficiency | MCCC2 |
Aarskog-Scott syndrome, Mental retardation, X-linked syndromic 16 | FGD1 |
Achondrogenesis Ib | SLC26A2 |
Achromatopsia-3 | CNGB3 |
Acyl-CoA dehydrogenase, medium chain, deficiency of | ACADM |
Acyl-CoA dehydrogenase, short-chain, deficiency of | ACADS |
Acyl-CoA dehydrogenase, short-chain, deficiency of | CYP17A1 |
Adrenal hyperplasia, congenital, due to 21-hydroxylase deficiency | CYP21A2 |
Adrenoleukodystrophy | ABCD1 |
Alkaptonuria | HGD |
Allan-Herndon-Dudley syndrome | SLC16A2 |
Alpha-methylacetoacetic aciduria | ACAT1 |
Alpha-thalassemia/mental retardation syndrome | ATRX |
Alport syndrome, autosomal recessive, | COL4A4 related |
Anauxetic dysplasia | RMRP |
Androgen insensitivity | AR |
Argininemia | ARG1 |
Argininosuccinic aciduria | ASL |
Arts Syndrome | PRPS1 |
Aspartylglucosaminuria | AGA |
Ataxia with isolated vitamin E deficiency | TTPA |
Ataxia-telangiectasia | ATM |
Auditory neuropathy, autosomal recessive, 1 | OTOF |
Autoimmune polyendocrinopathy syndrome, type I, with or without reversible metaphyseal dysplasia | AIRE |
Autosomal Recessive Polycystic Kidney Disease (ARPKD) | PKHD1 |
Bardet-Biedl syndrome 1 | BBS1 |
Bardet-Biedl syndrome 10 | BBS10 |
Bardet-Biedl syndrome 14, Joubert syndrome 5, Meckel syndrome 4, Senior-Loken syndrome 6 | CEP290 |
Bardet-Biedl syndrome 2 | BBS2 |
Bartter syndrome, type 4a | BSND |
Biotinidase deficiency | BTD |
Bjornstad syndrome | BCS1L |
Canavan disease | ASPA |
Carbamoylphosphate synthetase I deficiency | CPS1 |
Carnitine deficiency, systemic primary | SLC22A5 |
Carnitine-acylcarnitine translocase deficiency | SLC25A20 |
Cerebral creatine deficiency syndrome 1 | SLC6A8 |
Cerebrotendinous xanthomatosis | CYP27A1 |
Ceroid lipofuscinosis, neuronal, 5 | CLN5 |
Ceroid lipofuscinosis, neuronal, 8 | CLN8 |
Ceroid lipofuscinosis, neuronal, 10 | CTSD |
Ceroid lipofuscinosis, neuronal, 3 | CLN3 |
Ceroid lipofuscinosis, neuronal, 6, 601780 | CLN6 |
Ceroid lipofuscinosis, neuronal, 7 | MFSD8 |
Ceroid lipofuscinosis, neuronal, type 1 | PPT1 |
Ceroid lipofuscinosis, neuronal, type 2 | TPP1 |
Charcot-Marie-Tooth disease, type 4B1 | MTMR2 |
Charcot-Marie-Tooth disease, type 4C | SH3TC2 |
Charcot-Marie-Tooth disease, type 4D | NDRG1 |
Charcot-Marie-Tooth Neuropathy Type 4A | GDAP1 |
Cholestasis, benign recurrent intrahepatic, 2 | ABCB11 |
Citrullinemia | ASS1 |
Citrullinemia, neonatal-onset type II | SLC25A13 |
Coffin-Lowry syndrome | RPS6KA3 |
Combined malonic and methylmalonic acidemia | ACSF3 |
Cone rod dystrophy 3 | ABCA4 |
Cone-rod dystrophy, X-linked, 1 | RPGR |
Congenital disorder of glycosylation, type Ia | PMM2 |
Corneal endothelial dystrophy and sensorineural deafness (CDPD) | SLC4A11 |
CPT I (Carnitine Palmitoyltransferase IA) deficiency, hepatic, type IA | CPT1A |
CPT II (Carnitine Palmitoyltransferase) deficiency, lethal neonatal | CPT2 |
CRASH/ MASA syndrome | L1CAM |
Cystathioninuria | CTH |
Cystic fibrosis, Congenital bilateral absence of vas deferens | CFTR |
Cystinosis, atypical nephropathic | CTNS |
Cystinuria | SLC3A1 |
Cystinuria | SLC7A9 |
Deafness, autosomal recessive 1A (DFNB1-related) | GJB2 |
Deafness, autosomal recessive 12 | CDH23 |
Deafness, autosomal recessive 18A | USH1C |
Deafness, autosomal recessive 23 | PCDH15 |
Deafness, autosomal recessive 4, with enlarged vestibular aqueduct | SLC26A4 |
Deafness, digenic GJB2/GJB3 | GJB3 |
Dent disease 2 | OCRL |
Dihydrolipoamide dehydrogenase deficiency | DLD |
Duchenne muscular dystrophy, Becker muscular dystrophy | DMD |
Dysprothrombinemia, Prothrombin thrombophilia / Factor II deficiency | F2 |
Ehlers-Danlos syndrome, type VI | PLOD1 |
Ellis-van Creveld Syndrome | EVC2 |
Emphysema due to Alpha1 Anti-Trypsin deficiency | SERPINA1 |
Epidermolysis bullosa dystrophica, AR | COL7A1 |
Epidermolysis bullosa, junctional, Herlitz type | LAMB3 |
Epilepsy, X-linked, with variable learning disabilities and behavior disorders | SYN1 |
Epileptic encephalopathy, early infantile, 1 | ARX |
Ethylmalonic encephalopathy | ETHE1 |
Fabry disease | GLA |
Factor V Deficiency | F5 |
Factor XI deficiency, autosomal recessive | F11 |
Familial Mediterranean fever, autosomal recessive | MEFV |
Fanconi anemia | FANCA |
Fanconi anemia, complementation group C | FANCC |
Folate malabsorption, hereditary | SLC46A1 |
Fragile X syndrome | FMR1 |
Friedreich ataxia with retained reflexes | FXN |
Fructose intolerance | ALDOB |
Fumarase deficiency | FH |
G6PD deficiency / Favism | G6PD |
Galactokinase deficiency with cataracts | GALK1 |
Galactose epimerase deficiency | GALE |
Galactosemia | GALT |
Gaucher disease, perinatal lethal | GBA |
Glutamate formiminotransferase deficiency | FTCD |
Glutaric acidemia IIA | ETFA |
Glutaric acidemia IIB | ETFB |
Glutaric acidemia IIC | ETFDH |
Glutaric aciduria, type I | GCDH |
Glycine encephalopathy | AMT |
Glycine encephalopathy | GLDC |
Glycogen storage disease Ia | G6PC |
Glycogen storage disease Ib | SLC37A4 |
Glycogen storage disease II / Pompe disease | GAA |
Glycogen storage disease IIIa | AGL |
Glycogen storage disease IV | GBE1 |
GM1-gangliosidosis, types I, II, III | GLB1 |
Goldmann-Favre syndrome | NR2E3 |
HARP syndrome | PANK2 |
Hartnup disorder | SLC6A19 |
Heimler syndrome, type 2 | PEX6 |
Hemochromatosis, type 3 | TFR2 |
Hemochromatosis: Type 2A: HFE2 Related | HFE2 |
Hemophilia A, factor VIII deficiency, X-linked | F8 |
Hemophilia B, factor IX deficiency | F9 |
Herlitz Junctional Epidermolysis Bullosa: LAMC2 Related | LAMC2 |
Histidinemia | HAL |
HMG-CoA lyase deficiency | HMGCL |
Holocarboxylase synthetase deficiency | HLCS |
Homocystinuria, B6-responsive and nonresponsive types | CBS |
Homocystinuria-megaloblastic anemia, cbl E type | MTRR |
Hypercholesterolemia, familial | LDLR |
Hypercholesterolemia, familial, autosomal recessive | LDLRAP1 |
Hyperinsulinemic hypoglycemia, familial, type 2 | KCNJ11 |
Hypermethioninemia due to adenosine kinase deficiency | ADK |
Hypermethioninemia due to Glycine N-methyltransferase deficiency | GNMT |
Hypermethioninemia with deficiency of S-adenosylhomocysteine hydrolase | AHCY |
Hypermethioninemia, persistent, due to MAT1 deficiency | MAT1A |
Hyperoxaluria III | HOGA1 |
Hyperoxaluria, primary, type I | AGXT |
Hyperoxaluria, primary, type II | GRHPR |
Hyperphenylalaninemia, BH4-deficient, A | PTS |
Hyperphenylalaninemia, BH4-deficient, C | QDPR |
Hyperphenylalaninemia, BH4-deficient, D | PCBD1 |
Hyperprolinemia, type II | ALDH4A1 |
Hypogonadotropic hypogonadism 7 without anosmia | GNRHR |
Hypothryoidism, congenital, nongoitrous 4 | TSHB |
Hypothyroidism, congenital, nongoitrous 1 | TSHR |
Ichthyosis, congenital, autosomal recessive 1 | TGM1 |
Immunodeficiency, X-linked, with hyper-IgM | CD40LG |
Isovaleric acidemia | IVD |
Joubert syndrome 2 | TMEM216 |
Joubert syndrome 4 | NPHP1 |
Joubert syndrome 8 | ARL13B |
Joubert syndrome-3 | AHI1 |
Krabbe disease | GALC |
LCHAD deficiency | HADHA |
Leber congenital amaurosis 13 | RDH12 |
Leber congenital amaurosis 2 | RPE65 |
Leber congenital amaurosis 8 | CRB1 |
Leber congenital amaurosis-1 | GUCY2D |
Leber congenital amaurosis-4 | AIPL1 |
Leigh syndrome, French-Canadian type | LRPPRC |
Leigh syndrome, due to COX deficiency | SURF1 |
limb-girdle muscular dystrophy type 2B | DYSF |
Lipoid adrenal hyperplasia | STAR |
Lissencephaly, X-linked | DCX |
Macular corneal dystrophy | CHST6 |
Malonyl-CoA decarboxylase deficiency, 248360 | MLYCD |
Mannosidosis, alpha-, types I and II | MAN2B1 |
Maple syrup urine disease, type II | DBT |
Maple syrup urine disease, type Ia | BCKDHA |
Maple syrup urine disease, type Ib | BCKDHB |
McArdle disease / Glycogen Storage Disease: Type V | PYGM |
Meckel syndrome 1 | MKS1 |
Mental retardation and microcephaly with pontine and cerebellar hypoplasia | CASK |
Mental retardation syndrome, X-linked, Siderius type | PHF8 |
Mental retardation, X-linked | OPHN1 |
Mental retardation, X-linked 1/78 | IQSEC2 |
Mental retardation, X-linked 12/35 | THOC2 |
Mental retardation, X-linked 21/34 | IL1RAPL1 |
Mental retardation, X-linked 30/47 | PAK3 |
Mental retardation, X-linked 41 | GDI1 |
Mental retardation, X-linked 58 | TSPAN7 |
Mental retardation, X-linked 63 | ACSL4 |
Mental retardation, X-linked 9 | FTSJ1 |
Mental retardation, X-linked 90 | DLG3 |
Mental retardation, X-linked 94 | GRIA3 |
Mental retardation, X-linked 97 | ZNF711 |
Mental retardation, X-linked 99 | USP9X |
Mental retardation, X-linked syndromic 5 | AP1S2 |
Mental retardation, X-linked syndromic, Raymond type | ZDHHC9 |
Mental retardation, X-linked syndromic, Turner type | HUWE1 |
Mental retardation, X-linked, Asperger syndrome susceptibility, X-linked | NLGN4X |
Mental retardation, X-linked, FRAXE type | AFF2 |
Mental retardation, X-linked, syndromic 13 | MECP2 |
Mental retardation, X-linked, syndromic 14 | UPF3B |
Mental retardation, X-linked, syndromic 15 | CUL4B |
Mental retardation, X-linked, syndromic, Claes-Jensen type | KDM5C |
Metachromatic leukodystrophy | ARSA |
Methylmalonic aciduria and homocystinuria, cblC type | MMACHC |
Methylmalonic aciduria and homocystinuria, cblD type | MMADHC |
Methylmalonic aciduria and homocystinuria, cblF type | LMBRD1 |
Methylmalonic aciduria, vitamin B12-responsive, cbIB type | MMAB |
Methylmalonic aciduria, vitamin B12-responsive, cblA type | MMAA |
Methylmalonic aciduria, mut(0) type | MUT |
Methylmalonic and propionic acidemia and homocystinuria, cbIJ type | ABCD4 |
Methylmalonyl-CoA epimerase deficiency | MCEE |
Mevalonic aciduria | MVK |
Microphthalmia, isolated 3 | RAX |
MTHFR Deficiency | MTHFR |
Mucolipidosis III alpha/beta, and type II | GNPTAB |
Mucolipidosis IV | MCOLN1 |
Mucopolysaccharidosis Ih / Hurler Syndrome | IDUA |
Mucopolysaccharidosis II / Hunter Syndrome: X-linked | IDS |
Mucopolysaccharidosis IVA | GALNS |
Mucopolysaccharidosis type IIIA (Sanfilippo A) | SGSH |
Mucopolysaccharidosis type IIIB (Sanfilippo B), 252920 | NAGLU |
Mucopolysaccharidosis type IIIC (Sanfilippo C) | HGSNAT |
Mucopolysaccharidosis type IIID | GNS |
Mucopolysaccharidosis type VI (Maroteaux-Lamy) | ARSB |
Muscular dystrophy, limb-girdle, 2A | CAPN3 |
Muscular dystrophy, limb-girdle, type 2D | SGCA |
Muscular dystrophy, limb-girdle, type 2E | SGCB |
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies) | POMGNT1 |
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 1 | POMT1 |
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 | POMT2 |
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 5 | FKRP |
Myotonia congenita, dominant | CLCN1 |
Nemaline myopathy 2, autosomal recessive | NEB |
Nephrotic syndrome, type 1 (Finnish Type) | NPHS1 |
Neutropenia, severe congenital 3, autosomal recessive | HAX1 |
Niemann-Pick disease, type A | SMPD1 |
Niemann-Pick Disease, Type C2 | NPC2 |
Niemann-Pick Disease: Type C1 | NPC1 |
Nijmegen breakage syndrome | NBN |
Norrie disease | NDP |
Nystagmus 6, congenital, X-linked | GPR143 |
Ornithine transcarbamylase deficiency | OTC |
Osteogenesis imperfecta, type VIII | P3H1 |
Pelizaeus-Merzbacher disease, 312080 | PLP1 |
Peroxisomal acyl-CoA oxidase deficiency | ACOX1 |
Peroxisome biogenesis disorde 6A, Zellweger syndrome | PEX10 |
Peroxisome biogenesis disorder 1A, Zellweger syndrome-1 | PEX1 |
Phenylketonuria | PAH |
Phosphoglycerate kinase 1 deficiency | PGK1 |
Pituitary hormone deficiency, combined, 2 | PROP1 |
Primary ciliary dyskinesia | DNAH5 |
Propionic acidemia | PCCA |
Propionic acidemia | PCCB |
Pyruvate carboxylase deficiency | PC |
Pyruvate dehydrogenase E1-beta deficiency | PDHB |
Renpenning syndrome | PQBP1 |
Retinitis pigmentosa 2 | RP2 |
Retinitis pigmentosa 25 | EYS |
Retinitis pigmentosa 26 | CERKL |
Retinitis pigmentosa 39 | USH2A |
Retinitis pigmentosa 43 | PDE6A |
Retinitis pigmentosa 45 | CNGB1 |
Retinitis pigmentosa 46 | IDH3B |
Retinitis pigmentosa 49 | CNGA1 |
Retinitis pigmentosa 59 | DHDDS |
Retinoschisis: X-linked | RS1 |
Rhizomelic chondrodysplasia punctata, type 1; Peroxisome biogenesis disorder | PEX7 |
Rhizomelic chondrodysplasia punctata, type 3 | AGPS |
Sandhoff disease, infantile, juvenile, and adult forms | HEXB |
SCID, autosomal recessive, T-negative/B-positive type | JAK3 |
Segawa syndrome, recessive (tyrosine hydroxylase deficiency) | TH |
Severe combined immunodeficiency due to ADA deficiency | ADA |
Severe combined immunodeficiency, X-linked | IL2RG |
Smith-Lemli-Opitz syndrome | DHCR7 |
Spastic ataxia, Charlevoix-Saguenay type (ARSACS) | SACS |
Spastic paraplegia 11, autosomal recessive | SPG11 |
Spastic paraplegia 7, autosomal recessive | SPG7 |
Spinalmuscle atrophy (several types) | SMN1 |
Tay-Sachs disease, GM2-gangliosidisus, several forms | HEXA |
Thalassemia, alpha- | HBA1 |
Thalassemia, alpha- | HBA2 |
Thalassemias, beta- (Sickle Cell Anemia) | HBB |
Thrombocytopenia, congenital amegakaryocytic | MPL |
Thryoid dyshormonogenesis 6 | DUOX2 |
Thyroid dyshormonogenesis 1 | SLC5A5 |
Thyroid dyshormonogenesis 2A | TPO |
Thyroid dyshormonogenesis 3 | TG |
Thyroid dyshormonogenesis 4 | IYD |
Thyroid dyshormonogenesis 5 | DUOXA2 |
Thyroid hormone resistance | THRB |
Treacher Collins syndrome 3 | POLR1C |
Trifunctional protein deficiency | HADHB |
Tyrosinemia, type I | FAH |
Tyrosinemia, type II | TAT |
Usher syndrome, type 1B; Deafness, autosomal dominant 11 | MYO7A |
Usher syndrome, type 1G | USH1G |
Usher syndrome, type 2D / Deafness, autosomal recessive 31 | WHRN |
Usher syndrome, type 3A | CLRN1 |
Ventricular tachycardia, catecholaminergic polymorphic, 2 | CASQ2 |
Ventricular tachycardia, catecholaminergic polymorphic, 5, with or without muscle weakness, 615441 | TRDN |
VLCAD deficiency | ACADVL |
Walker-Warburg syndrome (congenital with brain and eye anomalies) | FKTN |
Wilson disease | ATP7B |
Wolman disease (lysosomal acid lipase deficiency) | LIPA |
X-linked mental retardation (XLMR) associated with macrocephaly | BRWD3 |
X-linked mixed deafness with perilymphatic gusher | POU3F4 |
Crypreservation
We use freezing medium certified by the competent authority (UE label), for use in humans.
- This leads us to meet the highest recommendations issued by international organizations related to banks of human tissues and cells (EU Directive 2004/23 and Law 9/2014).
- We ensure the traceability of the process, allowing at any time to know the batch and obtaining information to identify the problem.
- Ensures sterility of our freezing process.
In our cryopreservation process we use high biosafety heat sealed straws (CBS brand).
- The construction material of these straws (made of polyester resin) gives them great flexibility, making them virtually unbreakable and eliminating the major problem of traditional straws.
- Their resilience and the fact that the straws are heat sealed ensures that semen never gets into contact with liquid nitrogen, and reducing to nearly zero the risk of contamination between samples.
Straws are identified with a UNIQUE CODE that incorporates a serial code and donor identification. This allows us the traceability of each straw.
- Printing of donor´s identification code to prevent confusion between different donor straws.
- Imposibility for external manipulation of the code, as it is not possible to remove without destruction of the label.
- Easy identification by the receiving Reproductive Center.
We use an automatic filling and sealing system (CBS).
- Eliminates the need to manipulate the sample, avoiding the possibility of contamination and errors in this part of the process.
- Homogeneity when filling straws.
- Automatic heat sealing of the straws, preventing the possibility of contamination between samples in case the sealing system breaks down. This is a problem inherent to traditional sealing systems and cryotubes.
Our freezing process is done with computerized cryoPreservation systems , specific to semen (Cryologic CL-8800i).
- Optimization and consistency of results, since it is possible to reproduce the intensity and time of freezing.
- Reduced possibility of external contamination, compared to open cryopreservation processes.
- Traceability of temperature control during freezing process, enabling to save the curve throughout the complete freezing process.
We perform two different methods for sperm freezing, each producing two different types of samples available for order:
WHOLE SEMEN
Semen processing before freezing
whole semen from donor is diluted with TEST-yolk buffer based cryoprotective medium (Freezing Medium TYB by IrvineScientific). Then it is introduced in straws and freezed.
Sample preparation for use
It is required to perform a technique for the recovery of motile spermatozoa, in order to wash out seminal fluid, cryoprotectants, non-motile spermatozoa and remaining debrise.
Usage indications
- Intrauterine insemination
- IVF
- ICSI
READY USE Procesamiento del semen antes de la congelación El semen es sometido a un tratamiento de REM mediante gradientes de densidad, lavado posterior y dilución (1:3) con Sperm Freeze (FertiPro). Preparación de la muestra antes de uso Se recomienda lavar la muestra para la eliminación de los crioprotectores. Indicaciones de uso
- Inseminación intrauterina
- ICSI
Storage
We keep sample straws stored inside liquid nitrogen containers, with a costant temperature of -196 Celsius.
- Straws are immersed into containers with liquid nitrogen.
- Our storage method together with the use of high security straws ensures no cross-contamination between samples.
Our containers are continuously controlled regarding temperature as well as filling.
- Samples deterioration is kept to a minimum.
- It elliminates the risk for sample contamination.
When a sample is taken out of our bank it is removed definitely from our system.
- In case a sample is returned to CEIFER, it will never be stored again.
- All unused samples must be returned to CEIFER for destruction.
Transportation
We only use approved certified containers. Liquid nitrogen travels absorbed into porous material.
- Approved for shipping biological samples.
- Approved for air and terrestrial shipping transport.
- Extra security with no risk of spillage during transportation.
PACKAGING
Our delivery system makes possible to have a sample available at destination within 24h.
Quality Control and Continuous Improvement
CEIFER Sperm Bank has ISO 9001:2015 certification since 2004 in all its processes: donor recruitment, selection, sperm samples acquisition, freezing, storage and transport. Certification has been awarded by SGS, accredited entity for ISO certifications in Spain. Our Quality Management System is based on strategic processes, and is reflected in our Quality Policy.